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Exactiy Integrated Ciapeyron Equation. Its Use To Calculate 
QuanMles of Phase Change and To Design Vapor 
Pressure-Temperature Relatlons 

Cornelk Mw“an, *  WMom H. van Vu@, and Hondrk Vw 
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The vaporltatkn enthalpb AH of water, methanol, 
ethanol, and benzene are c.lculated, from p,  t data and 
auxHlary data, wlth the dlfferont&l Clapeyron equation and 
wtth an equatkn derived from tho exactly intograted 
Clapeyron .quakn, and the methods are compared as 
regards the sendtlvtty of AH to dovlatkns In the p , t  data. 
The Integral motlwd k found to be 1-2 ordm kr, 
sendtlve. I t  k d.mondrated how the clrp.yron equatkn, 
htthwto k lkved to be w u o l v ~  without pnlhrkrrry 
subrtrtutkn of abnpk e x p ”  for AH and Ab‘, can be 
transformed to an “oxact dffferontlal equaHon” by 
muM@ylng by an Integrating factor, and the rborow and 
general l n t ~ & o n  k p.rlomud. The rdvantage of the 
Integral mothod wtth reaped to the “thkd-law nwthod” In 
det.ctlng dovlatlng data polnk k dkcwsed. From the 
Integrated Clapeyron .qwtkn, several qurtknr are 
derlvd and uI.k podble w. as prerwre-t.mp.rature 
relatlom k cUaums4. I t  k ahown how Nnpblcal 
equations Rko that of Cryp. and Froa/K1#cwrrl can be 
derked ttom a bmod equation, and 
how new oq” can be ddgned whlch are focuud 
on spedal prop.rtl08 such as aaeoclatkn. 

Introductlon 

The present study is a corollary of the question of how to 
extrapolate enthatpies of vaporlzatlon, AH, as accurately as 
posslMe from accurate vapor p” data. Ow interest arises 
from our studies in combustion calorimetry of the condensed 
normal primary alkands ( 7 -3) and from the finding of Sunner, 
Wulff, and co-workers (4-6) that this group of compounds is 
interegting in a formulatbn for the CH2 increment in the enthalpy 
of formation of a-substituted n -alkanes. 

Usually, the Clapeyron equation is used with a dlfferentiated 
empirical pressure-temperature relatlon (EPTR) like that of 
Rankine, Cragoe, Cox, etc. The subject of EPTRs recehred and 
receives much attention. Partington (7) listed over 50 E m s  
in 195 1 (for reviews, see ref 7- 7 7). Becawre EPTRs are not 
hmody“icaUy founded, they may ghre physically unrealistic 
extrapolations without this being recognlzed (8, 7 7 ,  72). 

A basically identical approach is integration of the Clapeyron 
equation after making assumptions about AH and AV that 
make the integration possible (see, e.g., ref 7 1 ,  73, and 74). 
Subsequently, the integrated equatkn Is mpiricaUy modlffed by 
many-term expressions on the basis only of vapor pressure 
data. As a consequence, extrapolation outskle this region can 
again be risky. 

Therefore, we have investigated whether there would be an 
advantage in the use of the exactly integrated Ciapeyron 
equation. 

Exact Integration 

I t  has been suggested that the Clapeyron equation can only 
@e approximate integral sokrtkns (75), and Lewls and Randall 
(9) stated that integration would be cumbersome and only 

possible after writing out AH and A V as functions of pressure 
p and temperature T. However, Martynov (76) proved the 
integabllity of the Clapeyron equation even for different pres- 
swes on the phases. Unfortunately, Martynov was only inter- 
ested in the latter aspect, and, in order to carry out the inta 
gratbn, he made several approximations, includlng the tradi- 
tional resMction to ideal vapors and the constancy of AC, at 
coexistence. This makes his solution unsuitable for our pur- 
pose. In  addltkn, his tkral equation (1 l)  for the vapor-liquid 
equilibrium does not follow in the way that he states. 

The clepeyron equation in its traditional form dp = (AH/ 
T A V )  dT is not an “exact differential equation” (for the ter- 
minokgy, see, e.g., ref 77). When it is multiplied by the inte- 
grating factor T ’ A V  (T, T-l ,  AV,  TAV,  and AH-l are not 
integrating factors) 

(1) T-’AV@,T) dp + AH@,T) dT-l = 0 

it is an exact differential equation because 

[dAH@, T ) /dp]  = [dT-’AV(p, T) /dT- ’ ] ,  

Beam in mind that p and T are independent in AV@,T) 
(analogously in AH@,T)), a fact that Is implicitly wed, e.g., 
always when one Inserts an equation of state (p and T inde- 
pendent) for AV In the Clapeyron equation, we can state that 
these partial derhratlves exist. This is both a physical and a 
mathematical requirement. 

The solution of eq 1 Is (77) 

To-’ s,b AV@,To) dp + S I - ’  AH@,T) dT-’ = 0 (2b) r0-( 

The right-hand slde of eq 2a,b, that is, the integration constant, 
has been set equal to zero, slnce we want p and T to be able 
to assume the values p o  and T o  simultaneously. 

To our knowledge, the integrated form of the Clapeyron 
equation has not been given before. 

To obtain an expression with AH(po,T0), we make the nec- 
essary substitutlon In the second integrand of eq 2a, which 
gives 

AH@o,ToXTo-l - T- l )  (3)  

An equatkn wlth a comparable objective has been given earfier 
(75), but it is wrong, since it has a form for AC, which would, 
in our notation, be ACp(po,T0) instead of AC,(p,,T). 

Equation 3 permits the calculation of AH at any coexistence 
situation bo, To) from the p , T data if the equations of state and 
ACp at one pressure (not necessarily p o  since conversion is 
possible by means of the equations of state) are known (see 
Applications). 

An expression for AV@,,T0) analogous to eq 3 is yielded by 
eq 2b. The analogue here of the heat capacity term in eq 3 
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Table I. Comparison of Observed and Calculated Vapor Pressures 
of Ethanol and Enthalpies of Vaporization at Saturationa 

T P(obsd)b P(calcd)c P(obsd)d  AH^ 
173.85 0.168 (0.015) (0.020) (47.964) 
177.45 0.232 (0.029) (0.037) (47.791) 
181.35 0.319 (0.057) (0.070) (47.603) 
188.45 0.584 (0.188) (0.21) (47.269) 
191.65 0.795 (0.311) 0.34 (47.121) 
202.25 2.320 1.452 1.4 46.651 
211.95 5.866 5.138 4.7 46.234 
220.55 13.719 14.244 13  45.872 
232.15 39.463 49.413 (42) 45.392 
233.85 51.729 58.626 (49) 45.321 

a Temperatures are given in Kelvin, pressures in pascals, and en- 
thalpies of vaporization in kJ mol-’. Reference 18. Calculat- 
ed from eq 7 with auxiliary data in text; values in parentheses are 
based on extrapolated auxiliary values. Reference 20; values in 
parentheses are extrapolated. 

is an isothermal compressibility term. 
One will be interested often in AH(T,) at some pressure 

other than the coexistence pressure, e.g., at a chosen standard 
pressure p ’. From eq 3 is derived (derivatlon in Appendix I )  

T-‘ AV@,T)  dp - To-‘ 1’’ AV@,To) dp + 
P l  

Also, this relation is the starting point for designing pres- 
sure-temperature relations (see Designing p , T Relations). 

Appllcatlono 

the phases be a gas and let the equations of state be 
To show how eq 3 and 4 can be used in practice, let one of 

V(g,p,T) = RT/p + co(~,T) + ci(QvTlp + ... + c~(Q~TlP” 
(5) 

and an analogous expression, but without the term RTIp,  for 
the volume of the condensed phase, V(co,p, T). The difference 
in molar volumes is then 

AV@,T) = R T / p  + c c,(T)p’ (E short for EA) (6) 

When eq 6 is substituted into eq 3, one obtains 

/20 

Condensed systems are described by eq 7 when the In terms 
are dropped. 

When the values of the left side of eq 7 are plotted against 
T,-‘ - T-‘ ,  AH@,,T,) is obtained as the slope. Iteration for 
p ,  is required. For AH at a chosen p,, instead of To, the 
procedure should be comparable. 

When AC, and c, are known in the region to be extrapolated 
into, eq 7 cannot give physically unrealistic resutts. The quality 
of the extrapolation is merely governed by the accuracy of the 
measurements (in contrast to EPTRs). As an illustration of an 
application of eq 7, the p , T data for ethanol of bucker ( 78) 
will be examined. These data are the only welldocumented 
low-temperature p,T  data for ethanol in existence. An ex- 
trapolation of a Cragoe fit on the p , T data of Ambrose and 
Sprake (79) suggests that &ticker’s pressure values are up to 
1 order too high. This is merely a suggestion, not a proof, since 
there is no reason that a long extrapolation of an EPTR should 
yield a correct value. However, application of eq 7 to the p , T 
data of Ambrose and Sprake (19)  shows unequivocally that 
Driicker‘s values are far off in the low-temperature part (Table 
I). In the third column of pressures, the experimental values 
of Klumb and Luckert (20) are given. Although these are of 
low accuracy, they confirm the picture. 

The folbwlng auxiliary data were used. The virlal coefficlents 
and the heat capacity of the vapor were taken from the work 
of Counsel1 et al. (21)  (the denominators in the coefficients 8 
and c should be RT2 instead of RT(22)) .  The degree of sat- 
uration in the C, measurements did not exceed twethlrds and 
was in general less than that. We have assumed that the 
pertinent C, ,p, T relation (2 7 )  could be extrapolated to satura- 
tion, because the values for C, at 80% saturation at 101.325 
kPa (23) and at 90% saturation at 99.992 kPa (24) agree well 
with the value calculated from the C,,p, Trelation. This relation 
shows good agreement wlth the values about 280 K (25,26) 
and even with that at 200 K (25);  we have therefore found it 
judfbd to make our calculatbns down to 200 K. The 1975 p,T 
data of Ambrose (27)  could not be used, since heat capacity 

data at high degrees of saturation are lacking at high temper- 
atures. The liquid volume as a linear function of temperature 
(taken as Mependent of pressure for the range of interest) was 
calculated from data in Timmerman’s book (78). Fiock’s 
equation for the relation between the temperature and the heat 
capacity of the liquld at saturation pressure (28)  was used in 
the form given by Green (29) in his eq 2. The liquid heat 
capacity was considered to be independent of pressure, in 
accordance wlth the linear temperature dependence of the 
volume. All temperatures were recalculated to IPTS-68. The 
gas constant R was taken as 8.31441 J K-’ mol-‘, except 
where it was necessary to use a value appropriate to a cal- 
culation in the literature. 

The Cragoe fit on the p , T data of ref 79 follows the caicu- 
lated vapor pressure of Table I very well (<5%) in this case. 

Equation 7 can also be used to detect “sour” p ,  T data points. 
In other studies, the so-called “third-law method”, advocated 
by Lewis and Randail (S), is used (see, e.g., ref 12 for an 
applicatlon). Unfortunately, that method can be applied only if 
the difference in Go between the phases is known down to 0 
K. In practice, this will generally mean that AC, and c, must 
be known down to 0 K. Contrarily, the use of eq 7 requires 
knowledge of AC, and c, merely down to the lowest tempera- 
ture of the vapor pressure measurements. 

When the 25 vapor pressures measured by Ambrose and 
Sprake (79)  are calculated with eq 7, Le., the resutts of the 
iteration, the series of residuals turns out to be nonrandom 
(Table 11). The highest pressure value appears to be partlc- 
ularly high (by about 0.1 kPa). When this measurement is left 
out, the remaining 24 residuals are found to constitute a random 
set, and the standard deviation of the series is reduced by a 
factor 2. 

An analysis of p , T data is much less likely to be successful 
when an EPTR is used. This is so because, in general, the type 
and number of terms are chosen to obtain the best flt with the 
data points. When the Cragoe equation is applied in the case 
mentioned above, the set of 25 residuals is random (79) and 
the sow point is not detected. Omission of this point leaves the 
standard deviation unchanged. 

Our main point of Interest is the accuracy in the p ,  T data, 
required to obtain a preset accuracy in AH. As will be shown 
below, the accuracy in the p , T data must be 1 order or more 
better in the differential method than in the integral method using 
eq 7. A simple test was made by calculating the deviation in 
AH of water, methanol, ethanol, and benzene resulting from an 
intentional error in T. The procedure is described here in detail 
for ethand. (For the other three compounds, the procedure and 
the criterla, as has been described, for accepttng the data were 
comparable.) 

Flrst, all AH@,, Toys pertaining to the list of the 25 p , T data 
(79) were calculated with eq 7, as described under it, and then 
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Table 11. Comparison of Observed and Calculated Vapor Pressures 
of Ethanol and Enthaloies of Vaoorization at Saturationa 

292.766 
296.776 
298.864 
301.299 
306.475 
309.747 
312.377 
316.368 
320.489 
324.221 
327.804 
332.0 13 
336.006 
339.719 
343.701 
348.122 
35 0.5 48 
35 1.1 32 
35 1.483 
35 1.640 
352.331 
355.506 
358.981 
362.752 
366.629 

5.726 
7.269 
8.205 
9.4 30 

12.566 
14.981 
17.200 
21.109 
25.914 
31.047 
36.760 
44.584 
53.267 
62.572 
74.032 
88.763 
97.821 

100.121 
101.518 
102.151 
104.98 3 
118.719 
135.5 19 
155.824 
179.321 

5.726 
1.268 
8.205 
9.428 

12.564 
14.979 
17.200 
21.108 
25.917 
31.049 
36.765 
44.595 
53.279 
62.589 
74.050 
88.773 
97.834 

100.127 
101.525 
102.156 
104.972 
118.742 
135.487 
155.793 
179.196 

-0.000 
0.001 
0.000 
0.002 
0.002 
0.002 
0.001 
0.001 

-0.003 
-0.002 
-0.005 
-0.01 1 
-0.012 
-0.017 
-0.018 
-0.010 
-0.013 
-0.006 
-0.007 
-0.005 

0.011 
-0.023 

0.032 
0.031 
0.125 

42.683 
42.470 
42.356 
42.221 
41.926 
41.132 
41.573 
41.325 
41.059 
40.810 
40.563 
40.264 
39.969 
39.686 
39.372 
39.011 
38.808 
38.758 
38.128 
38.714 
38.655 
38.378 
38.067 
37.720 
37.351 

a Temperatures are given in Kelvin, pressures in kilopaacals, and 
enthalpies of vaporization in kJ mol-’. Reference 19. Calcu- 
lated from eq 7 with auxiliary data given in text. 

by means of the differential method wkh the calculated Cragoe 
and Frost/Kalkwarf coefficients and with Chebyshev polyno- 
mials of the orders 3, 4, and 5 (8).  Subsequently, the flgure 
for the lowest temperature in the l i t ,  292.766 K, was changed 
by -0.05 K, and all calculations were repeated. Next, the same 
was done for a +0.05 K change in the highest temperature, 
366.629 K. Giving this example does not imply that deviations 
of this magnitude were plausible in the accurate work of A m  
brow and Sprake, but such deviatbns can easily occur in work 
of lower accuracy. Besides, it is merely to illustrate what is 
meant. 

The following literature data were used for water, methanol, 
and benzene: water, C,(i) (32), C,(g) (ref 33 and Appendix 
1111, c,(g) (341, V(I) (331, p,T (12 ) ;  methanol, C,(I) (28, 351, 
C,(g) (361, CAg) (36), V(ih (181, p,T(79) ;  benzene, C,O) (W,  
C,(g) (37), c,(g) (37), V(I) (le), p , T (  72). The vkial coefficient 
6 ,  in ref 37 was accounted for by writing V(g) = RTp-‘ + 6,  
- B;R-‘T-’p. 

Some of our results for the four compounds are given in 
Table 111. Only AH at the lowest and highest temperatures 
are given. In the middle of the interval, all effects are smaller. 
A slight correction in AH (a few joules at the most) is incor- 
porated into the calculated values, to obtain the AH value 
pertaining to the original, measured temperatures where these 
have been changed by 0.05 K. The change of AH with tem- 
perature, f50-100 J K-‘, apparent from the literatwe data, was 
used as a basis for this correction. 

The five EPTRs are strikingly more strongly affected by the 
change of one temperature value than the integral equation. 
The effect is most pronounced with the fifth-order Chebyshev 
polynomial. 

Unexpected is the magnitude of the change in AH at the 
high-temperature end when the intentional change of 0.05 K is 
made at the low-temperature side and vice versa. This effect 
is only present in EPTRs, and is again most pronounced with 
the fifth-order Chebyshev polynomial (see, e.g., methanol and 
ethanol, lowest T - 0.05 K, high T end). This suggests con- 
sequences for the application of EPTRs In general. A set of 
vapor pressure measurements often includes measurements 

at medium pressures (accurate) together with measurements 
at either hlgh or low pressures (less accurate). The accuracy 
of calculated enthalpies of vaporization at the medlumpressure 
end is thus, unexpectedly, impaired by the less accurate mea- 
surements at the other end. 

The vaporizetion enthalpies as calculated here from p,Tdata, 
whether by means of the dlfferentlal or integral method, agree 
well with the calorimetric values. This is to be expected, since 
only data of high quality were used (it was not necessary to use 
all pertaining hlghquallty data in the literature to make our point 
in Table 111). The discrepancy for water at 400 K may be due 
to the tong extrapolation of the v b l  coefficients. The “integral 
value” agrees with the calorimetric value. 

The insensitivity of AH calculated by the integral method to 
deviations In the p , T data makes the method suitable where the 
differential method would fail, i.e., when only few p,T data 
(minimum: 2) of low accuracy are available. On the other 
hand, AH calculated by the integral method is subject to de- 
viations in AC, (see Table 111). The choice to use either the 
differential or Integral method must depend on availability and 
quality of the data, either measured, calculated, or estimated. 

We emphasize that the fact that eq 7 has been derived as 
exactly as possible does not restrict its use to those cases 
where AC, and c, are exactly known. Equation 7 can also be 
useful when, e.g., only estimates are available. 

Calculatlon of AH In Arbltrary States 

AH in arbitrary states is obtained by substitution of eq 6 into 
eq 4 

The quantities c,( T )  and c,( To) are the values of c, at T and T,,. 
Equation 8 Is used as a linear relation, as is eq 7. 

The importance of eq 8 lles in the possibiiity to calculate AH 
directly in arbitrary states without an intervening calculation at 
coexistence via eq 7. 

AH(p,=O,T,) by eq 8 differs slightly from AHo for the 
phases in their standard states, since the standard-state pres- 
sure for a condensed phase is 1 atm by convention. Numer- 
ically, the difference is negligible. Therefore, AH@ ,=O,To) can 
often be taken to represent AHo(To). I f  necessary, the dif- 
ference can be calculated from the equation of state of the 
condensed phase. When the conversion to 1 atm for a con- 
densed phase is actually applied to eq 8, the result produces 
the special case (9) where the AH looked for is AHo(gld,p- 
(cop  latm). 

Deslgnlng p , T Relations 

When AC,, and c, are known, eq 7-9 are complete vapor 
pressure equations once the two parameters AH at chosen To 
(or po)  and po (or To) have been adjusted to the p,T data. 
However, the required values for AC, and c, will often not be 
available. This does not mean that an EPTR is then the only 
way out. Estimates can be made of AC, or c, and used with 
eq 7-9. These equatbns have the forceful advantage that they 
show exactly how these quantities must be inserted, whereas 
an arbitrary EPTR has no clear relationship between its terms 
and their coefficlents on the one skle and AC, and c, on the 
other slde. The latter fact also makes it impossible to translate 
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Table 111. Consequences for AH@,,T0) of Intentional Changef in Measured Temperatures (without Changing the Corresponding Ressures) 
and Heat Capacities ACp(p0,T) and Comparison of the Consequences for the Integral and Differential Methodsb 

change in 

(J mol-') 

(J mol-') changing 
for correct lowest T by 

Tvalues -0.05 K 

AH@o,To)l 

aH@,,T0)l upon 

change in change in change in change in change in 

(J mol-') (J mol-') (J mol-') (J mol-') (J mol-') 
upon upon changing M@,,T0) I  upon upon upon changing 

changing ACp e0,T) by (J mol-') changing changing ACp by 
highest T by +1 J K-' for correct lowest T by highest T by +1 J K-' 

+0.05 K mol-' Tvalues -0.05 K +0.05 K mol-' 

M@,,T0 )I AH@,,T0)I u @ o , T o ) /  u@o,To) I  aH@o,To)I 

Integ 
Crag 
Fr/K 
Cheb 3 
Cheb 4 
Cheb 5 
Cal 

Integ 
Crag 
Fr/K 
Cheb 3 
Cheb 4 
Cheb 5 
Cal 

Integ 
Crag 
Fr/K 
Cheb 3 
Cheb 4 
Cheb 5 
Car 

Integ 
Crag 
Fr/K 
Cheb 3 
Cheb 4 
Cheb 5 
Cal 

Water, T o  = 300.000 K 
43 886 -13 -5 
43 900 -160 -20 
43 893 -149 -16 
43 956 -177 -40 
43 903 -24 1 +43 
43 901 -338 -39 
43 915' 

Water, To = 400.000 K 
39 424 -15 -6 
39 171 -19 -8 3 
39 182 -84 -96 
39 134 -50 -83 
39 166 +58 -176 
39 164 -5 6 -270 
39 402d 

Methanol, T o  = 288.044 K 
31 880 -11 -5 
31 948 -177 -25 
31 943 -168 -22 
31 962 -186 -40 
37 973 -183 +5 7 
37 988 -418 -7 1 
37 795e 

Methanol, To  = 356.822 K 
33 921 -9 -4 
33 934 -7 3 -60 
33 934 -76 -69 
33 923 -5 3 -60 
33 901 +77 -15 1 
33 920 -9 1 -321 
33 95ge 

-47 Integ 
Crag 
Fr/K 
Cheb 3 
Cheb 4 
Cheb 5 
Cal 

+54 Integ 
Crag 
Fr/K 
Cheb 3 
Cheb 4 
Cheb 5 
Cal 

-31 Integ 
Crag 
Fr/K 
Cheb 3 
Cheb 4 
Cheb 5 
Cal 

+ 35 Integ 
Crag 
Fr/K 
Cheb 3 
Cheb 4 
Cheb 5 
Cal 

Ethanol, T o  = 292.766 K 
42 683 -9 -4 -35 
42 695 -181 -26 
42 697 -170 -24 
42 703 -189 -43 
42 715 -298 +5 3 
42 728 -45 8 -69 
42 558f 

Ethanol, To  = 366.629 K 
37 351 -8 -4 
31 444 -7 3 -59 
37 431 -72 -68 
37 439 -50 -5 8 
37 422 +78 -158 
31 438 -116 -295 
37 39If 

+38 

Benzene, To = 308.322 K 
33 285 -10 -5 -37 
33 251 -132 -2 1 
33 248 -131 -20 
33 285 -145 -33 
33 262 -218 +42 
33 263 -321 -43 
33 269g 

Benzene, To = 388.847 K 
28 601 -10 -3 +43 
28 593 -60 -63 
28 584 -62 -04 
28 571 -45 -64 
28 580 +60 -150 
28 581 -66 -246 
28 5340 

a A correction of a few joules is incorporated in the second and third columns because of this change; see text. Abbreviations for the 
equations: Integ, integral equation 7; Crag, Cragoe; Fr/K, Frost/Kalkwarf; Cheb 3 ,4 ,5 ,  Chebyshev polynomials of order three, four, and five, 
respectively. Cal means calorimetrically determined value. From ref 32 by quadratic extrapola- 
tion. e From ref 22, 28, 30, 31, and 36 by quadratic fitting; the value at 288.044 K is extrapolated. From ref 21, 28, 30, and 31 by quad- 
ratic fitting; the value at 292.766 K is extrapolated. g From ref 37. 

From ref 32 by quadratic interpolation. 

data or estimates into constraints for the coefficients of the 
EPTR . 

The starting point for designing a p ,  T relation Is eq 8 with p 
= 0: 

R I n p +  A z d T "  ~rAC,,@l=O.T)dT+ TQ 

T-l c (i  + l)-'c,(T)p'+' = AH@l=O,To)(T,-l - T- l )  t 
I t 0  

R In p o  + T ~ - ~  C (i + i)-lC,(ro)p;+l (9) 
,201 

Putting p = 0 not only simplifies eq 8 but also shows a AC,, 
independent of pressure. Lea- the heat capaclty of the liquid 
out of consideration for the moment, the heat capacity of the 
gas Is now clearly separated from the terms c,(g). The terms 
accounting for the Intermolecular interaction in the vapor are 
now not distributed among AC,, and c/ (and AH) but are con- 
centrated in c, only, thus making a simple formulatbn adequate 
to describe CJg) as a function of temperature. 

The reader will be able to verify the following example. I f  
we put, for Instance, AC,,(p1=O,T) = Aa + AbT+ AcT2, 
V(g,p,T) = RTp-l + B,, where B, is a virial coefficient of the 
type developed by Hirschfelder, McClure, and Weeks (38) for 
dlmerlzatbn or a squarawell potentla1 energy fundon B, = b ,  + KT exp(ST-'), and If V(c0) Is taken In this example as equal 

to b,, substttutlon In eq 9 with the aid of eq 5 and 6 gives a 
tallored vapor pressure equation of the form 

In p = A + BT-l + C In T +  DT+ ET2 + Fp exp(JT-') 
(10) 

The meaning of the coefficients is given In Appendix 11. 
Equation 10 bears a close resemblance to eq 15 of Scott and 
Osborn (72), which they derived ingeniously in a semiempirical 
way. They demonstrated that their equation accurately repre 
duced the measured vapor pressures for normal and abnomtal 
fluids (water) alike. 

The clarity of the physical significance of the terms, and thek 
coefficients, of the equations derived from eq 9 enables one 
to effectively Impose constraints. Without constraints, If need 
be estimates, equations like eq 10 will not give necessarily good 
resuits in extrapolations. Thls Is because the fitting Is then 
entirely directed to the quality of the fit in the interval of the 
measured p ,  T data (useful for interpolation), but the last terms 
in eq 10 and analogous relations then can acquire unreatlstlcally 
large values, whereas they were merely meant as corrections. 
Ambrose (8) gives an example of a Cragoe equation (eq 10 
with terms 3 and 6 left out) with four terms of comparable 
magnitude. This situation has given rise to some popularity of 
Chebyshev potynomials, a mathematical device which can give 
large deviations in derived quantities, as we have shown. 
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Table IV. Approximations in ACp, Vuial Coefficients, and 
Condensed Volume implieda in Some Frequently Used Vapor 
Pressure Relations 

equatione 
In p = A  + ACp- type nonideality 
BT-’+ @ , = O )  of gas V(c0)f 

Clapeyron/ + 0 0 none 0 

Rankine/ + C l n T  Aa none 0 

van Laarcpd + C I ~ T  + AU + none 0 

CranoeC +CT + AbT + none 0 

ClausiusC 

KirchhofF 

DT AbT 
- 

DT2 ACT= 
Frost/Kalkwarf + C In T + Aa co = - a ‘ R - ’ T ’  + bIb 

DPT-= b’ 
a Approximations found, in this study, to be actually implied in 

the equations. These are not always the approximations meant, 
by the designers of the equations, to be implied. See text. a’ 
and b’ are the van der Waals constants. According to Partington 
( T ) ,  using a second virial coefficient of this form is approximately 
equivalent to using the van der Waals equation. Vapor pressure 
relations in which the c i  terms are neglected can be produced as 
well from eq 7 and 8 as from eq 9. However, in cases where the 
c i  terms are not neglected, eq 7 and 8 would yield vapor pressure 
relations with mixed additional terms, in T and po and in T and 
p I ,  respectively, which eq 9 does not. For homogeneity of formu- 
lation, we have derived all five relations from eq 9. The Nernst 
equation has the same form, but its coefficient C has a fixed value. 
The van Laar equation should yield better extrapolations than the 
Cragoe equation, since its assumption about ACp as a function of 
Tis  more realistic. e Coefficients in Appendix 11. Condensed 
volume. 

Finally, we show In Table I V  how eq 9 yields some well- 
known vapor pressure relations. We emphasize that the ap- 
proximations in TaMe I V  are those to which a particular 
equation is actually found to correspond in the present study. 
These are not always the same as those which some authors 
had in mind. For instance, van b a r  (39) used the van der 
Waab equatkn. but, preaumeMy throogh same cancellatkn, his 
resulting equation does not account for nonldeality of the gas. 
Some of the assumptions made by Frost and Kalkwarf (40) 
together merely amount to the effect of taking ACp@ ’=O) as 
a constant. 
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App.mllx I 

Equation 4 is developed from eq 3 as follows. 

Analogously, we have for AC, 

T’ T T 

where 
A =  

The form of the last integral has been obtained by using the 
equality 

[WAH/aT)p/apl  r = [a(aAH/ap)r/dTlp 

and then substl~~ing (aT-lAVIdT-l)p for (aPH/ap)r.  he term 
A Is worked out as follows. The Integrations are interchanged 

A =  

so 

Upon subswutkn of eq 11, 12, and 14 into eq 3, we obtain eq 
4. 

Appendix I 1  

The coefficients of the equation 

In p = A + BT-’ + C In T + DT + ET2 + Fp exp(JT-’) 

are 
A = R-’(-Aa - Aa In To - AbTo - J / ,AcT ,~  + 

AH@,=O,To)To-’ + R In po + Kp, exp(JT,-’)) 

B I R-’{AaTo + Y2AbT: + j/,AcT: - AH@l=O,To)] 

C I R-’Aa 

D 3 j/2R-‘Ab 

E =  ’/6)-’Ac 

-R-’K 

The coeffldents of the vapor presswe retations in Table I V  are 
as follows (see also footnote c of Table IV): 

van Laar 

A f R-’(-Aa - Aa In To - AbTo + AH@,=O,To)T0-’ + 
ff In Po) 

B R-‘(AaTo + j/,AbT? - AH@,=O,T,)) 

C I R - l b  

Dm Y$rlAb 

Ranklne: see van Laar, with Ab = 0; in the Ciapeyron-Clausius 
equation, Aa = Ab = 0. 
Cragoe 

A = R-’(-AbTo - 1/AcTo2 + AH@l=O,To)To-l + R In poi 

B I R-’{)/,AbTo2 + ’/ACT: - AH@,=O,T,)) 

C = Y8-lAb 

D = 1/R-lAc 
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Frost/Kalkwarf 

A = R-‘(-Aa - Aa In T o  + AH@l=O,To)To-l + R In p o  - 

B R-‘(AaTo - AH@,=O,T0)] 

C R-lAa 

/?-‘a$ ,,T,-~\ 

D 1 R-2a’ 

Appendlx I11 

Apparently, C, (g,p , T) for water has not been measured. 
However, the virial coefficients and the ideal heat capacity 
C,(g,pl=O,T) are known. To account for C,(g,p,,T) in eq 7 
without double differentiation followed by double integration of 
the very complex viriai coefficients, we retained the ideal gas 
part in the double integral and shifted the rest to the c,(g) terms 
(in the following, we omit g for gas). 

T’ T T’ T 

T’ T 

i>O To” T, 
I: (i + l)‘lpoi*l 1 d T *  1 T[d2ci(T)/dT’] dT (15) 

Applying partlal integration with T as the primitlve and d2c,- 
(T)/d T 2  as the derivative in the last integrand and adding the 
resuit of the integration of the last term of eq 15 to the gas part 
of the Cc, term in eq 7 yields the combined term 

+r-I C (i + ~)-I(C,(T)#+~ - c,(~, )p;+l  + (T,  - T )  x 
120 -- 

At the same time, this yields yet another type of vapor pressure 
equation. 

Into this term, a substitution is made to account for the fact 
that Wexler’s virial coefficients are c,(T)R-‘T-l. (There is a 
printing error in Wexier’s expression for C’. I t  should read log 
(-C’) instead of - log C’.) 
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Aqueous Dissociation of Phenylpropiolic Acid 

Lowell M. Schwartz,’ Robert I.  Gelb, and Daniel A. Laufer 
Department of Chemistty, University of Massachusetts, Boston, Massachusetts 02 125 

The acld dlmoclatlon constant of aqueous phenylproplollc 
acld (3-phenyl-2-propynok acld) has been determlned 
between 15 and 45 OC by pH potentlometry. The 
standard enthalpy and entropy of dksoclatlon are 
calculated from the temperature varlatlon of the 
dksoclatlon constant. The lac NMR resonance 
dlsplacement of the carboxylate carbon upon acld 
dlsroclatlon was measured, and Its correlatlon wlth the 
standard entropy of dlbsoclatlon lmplles that the molecular 
form of aqueous phenylproplolk acld exlsts partly as an 
Ion palr In equlllbrlum wlth the covalently bonded 
structure. 

The literature seems not to contain reliable values of acid 
dissociation parameters for aqueous phenylpropiollc acid (3- 
phenyCBpropynok acld). The “Handbook of Biochemistry and 
Molecular Biology” lists two entries, a value of pK, = 2.269 at 
16.8 OC together wlth AHo = -0.792 kcal mol-’ and ASo = 
-13 cal m0l-l K-’ ( 7 )  and a value of pK, = 2.23 at 25 OC (2). 
The entry at 16.8 OC makes reference to a paper by Walde (3), 
but this paper makes further reference to a paper by Harned 
and Sutherland (4) as the primary source. Harned and Suth- 
erland, however, do not mention phenyipropiolic acid so that 
details of the 16.8 OC experiment are unknown. The 25 OC 
entry in the handbook is attributed to Mansfield and W i n g  (5), 
who, indeed, report a pH potentiometric measurement of pK, 
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