Exactly Integrated Clapeyron Equation. Its Use To Calculate Quanttles of Phase Change and To Design Vapor Pressure-Temperature Relations

Cornells Moseelman, " Whlem H. van Vugt, and Hendrlk Vos
Laboratory of Physical Chemlstry, The Free University, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

Abstract

The vaporization enthalples ΔH of water, methenol, ethanol, and benzene are calculated, from P,T data and auxillary data, whth the differential Clapeyron equation and whth an equation derived from the exactly integrated Clapeyron equation, and the methods are compared as regards the sensitivity of ΔH to deviations in the p, T data. The Imfegral method ts found to be 1-2 orders lese sensitive. It le demonetratod how the Clapeyron equation, hitherto belloved to be uneolvable without prellminary subettution of stmple expresetions for ΔH and ΔV, can be traneformed to an "exact differential equation" by multiplying by an integrating factor, and the rigorous and general integration is performed. The advantage of the Integral method with reepect to the "third-law method" In detecting deviating data points is diecuesed. From the Integrated Clapeyron equation, several equatione are derlved and thetr poselble use as preseure-temperature relations if diecussed. It is shown how emplrical equations 眺e that of Cragoe and Frost/Kalikwart can be derived from a thermodynamiaally baecd equation, and how new equations can be deelgned which are focused on special properties such as aseoclation.

Introduction
The present study is a coroltary of the question of how to extrapolate enthalpies of vaporization, ΔH, as accurately as possible from accurate vapor pressure data. Our interest arises from our studies in combustion calorimetry of the condensed normal primary alkanols (1-3) and from the finding of Sunner, Wulff, and co-workers (4-8) that thls group of compounds is Interesting in a formulation for the CH_{2} increment in the enthalipy of formation of α-substituted n-alkanes.
Usualty, the Clapeyron equation is used with a differentiated empirical pressure-temperature relation (EPTR) like that of Rankine, Cragoe, Cox, etc. The subject of EPTRs recelved and recelves much attention. Partington (7) listed over 50 EPTRs in 1951 (for reviews, see ref 7-11). Because EPTRs are not thermodynamically founded, they may give physically unrealistic extrapolations without this being recognized $(8,11,12)$.

A basically identical approach is integration of the Clapeyron equation after making assumptions about ΔH and ΔV that make the integration possible (see, e.g., ref 11, 13, and 14). Subsequently, the integrated equation is empirically modfied by many-term expressions on the basis only of vapor pressure data. As a consequence, extrapolation outside this region can again be risky.
Therefore, we have investigated whether there would be an advantage in the use of the exactly integrated Clapeyron equation.

Exact Integration

It has been suggested that the Clapeyron equation can only glve approximate integral solutions (15), and Lewis and Randall (9) stated that integration would be cumbersome and only
possible after writing out ΔH and ΔV as functions of pressure p and temperature T. However, Martynov (16) proved the integrabllity of the Clapeyron equation even for different pressures on the phases. Unfortunately, Martynov was only interested in the latter aspect, and, in order to carry out the integration, he made several approximations, including the traditlonal restriction to Ideal vapors and the constancy of ΔC_{p} at coexistence. This makes his solution unsultable for our purpose. In addition, his final equation (11) for the vapor-liquld equllibrium does not follow in the way that he states.

The Clapeyron equation In its traditional form $\mathrm{d} p=(\Delta H /$ $T \Delta V) \mathrm{d} T$ is not an "exact differentlal equation" (for the terminology, see, e.g., ref 17). When it is multiplied by the integrating factor $T^{-1} \Delta V\left(T, T^{-1}, \Delta V, T \Delta V\right.$, and ΔH^{-1} are not integrating factors)

$$
\begin{equation*}
T^{-1} \Delta V(\rho, T) \mathrm{d} p+\Delta H(p, T) \mathrm{d} T^{-1}=0 \tag{1}
\end{equation*}
$$

It is an exact differential equation because

$$
[\partial \Delta H(p, T) / \partial p]_{T}=\left[\partial T^{-1} \Delta V(p, T) / \partial T^{-1}\right]_{p}
$$

Bearing in mind that p and T are independent in $\Delta V(p, T)$ (analogously in $\Delta H(p, T)$), a fact that is implicitly used, e.g., always when one inserts an equation of state (p and T independent) for ΔV in the Clapeyron equation, we can state that these partial derivatives exist. This is both a physical and a mathematical requirement.
The solution of eq 1 is (17)

$$
\begin{align*}
& T^{-1} \int_{\rho_{0}}^{\rho} \Delta V(p, T) \mathrm{d} p+\int_{T_{0}{ }^{-1}}^{T^{-1}} \Delta H\left(\rho_{0}, T\right) \mathrm{d} T^{-1}=0 \tag{2a}\\
& T_{0}^{-1} \int_{\rho_{0}}^{\rho} \Delta V\left(p, T_{0}\right) \mathrm{d} p+\int_{T_{0}-1}^{T^{-1}} \Delta H(p, T) \mathrm{d} T^{-1}=0 \tag{2b}
\end{align*}
$$

The right-hand side of eq $2 \mathrm{a}, \mathrm{b}$, that is, the integration constant, has been set equal to zero, since we want p and T to be able to assume the values p_{0} and T_{0} simultaneously.

To our knowledge, the integrated form of the Clapeyron equation has not been glven before.
To obtain an expression with $\Delta H\left(p_{0}, T_{0}\right)$, we make the necessary substitution in the second integrand of eq 2 a , which glves

$$
\begin{array}{r}
T^{-1} \int_{p_{0}}^{p} \Delta V(\rho, T) \mathrm{d} p+\int_{T_{0}-1}^{T^{-1}} \mathrm{~d} T^{-1} \int_{T_{0}}^{T} \Delta C_{p}\left(p_{0}, T\right) \mathrm{d} T= \\
\Delta H\left(p_{0}, T_{0}\right)\left(T_{0}^{-1}-T^{-1}\right) \tag{3}
\end{array}
$$

An equation with a comparable objective has been given earlier (15), but it is wrong, since it has a form for ΔC_{p} which would, in our notation, be $\Delta C_{p}\left(p_{0}, T_{0}\right)$ instead of $\Delta C_{p}\left(\rho_{0}, T\right)$.
Equation 3 permits the calculation of ΔH at any coexistence situation (p_{0}, T_{0}) from the p, T data if the equations of state and ΔC_{p} at one pressure (not necessarily p_{0} since conversion is possible by means of the equations of state) are known (see Applications).

An expression for $\Delta V\left(\rho_{0}, T_{0}\right)$ analogous to eq 3 is yielded by eq 2b. The analogue here of the heat capacity term in eq 3
is an isothermal compressibility term.
One will be interested often in $\Delta H\left(T_{0}\right)$ at some pressure other than the coexistence pressure, e.g., at a chosen standard pressure p_{1}. From eq 3 is derived (derivation in Appendix I)

$$
\begin{align*}
& T^{-1} \int_{\rho,}^{\rho} \Delta V(p, T) \mathrm{d} p-T_{0}^{-1} \int_{\rho_{,}}^{\rho_{0}} \Delta V\left(\rho, T_{0}\right) \mathrm{d} p+ \\
& \int_{T_{0}-1}^{T^{-1}} \mathrm{~d} T^{-1} \int_{T_{0}}^{T} \Delta C_{\rho}\left(p_{1}, T\right) \mathrm{d} T=\Delta H\left(p_{1}, T_{0}\right)\left(T_{0}^{-1}-T^{-1}\right) \tag{4}
\end{align*}
$$

Also, this relation is the starting point for designing pres-sure-temperature relations (see Designing p, T Relations).

Applications

To show how eq 3 and 4 can be used in practice, let one of the phases be a gas and let the equations of state be

$$
\begin{equation*}
V(\mathrm{~g}, \mathrm{p}, T)=R T / p+c_{0}(\mathrm{~g}, T)+c_{1}(\mathrm{~g}, T) p+\ldots+c_{n}(\mathrm{~g}, T) p^{n} \tag{5}
\end{equation*}
$$

and an analogous expression, but without the term $R T / p$, for the volume of the condensed phase, $V(c o, p, T)$. The difference in molar volumes is then

$$
\begin{equation*}
\Delta V(p, T)=R T / p+\sum_{l \geq 0} c_{l}(T) p^{\prime} \quad\left(\sum \text { short for } \sum \Delta\right) \tag{6}
\end{equation*}
$$

When eq 6 is substituted into eq 3, one obtains

$$
\begin{align*}
& R \ln p+\int_{T_{0}-1}^{T^{-1}} \mathrm{~d} T^{-1} \int_{T_{0}}^{T} \Delta C_{p}\left(p_{0}, T\right) \mathrm{d} T+T^{-1} \sum_{l \geq 0}(i+ \\
& \left.1)^{-1} c_{l}(T)\left(p^{j+1}-p_{0}^{\prime+1}\right)=\Delta H\left(p_{0}, T_{0}\right) K T_{0}^{-1}-T^{-1}\right)+R \ln p_{0} \tag{7}
\end{align*}
$$

Condensed systems are described by eq 7 when the In terms are dropped.

When the values of the left side of eq 7 are plotted against $T_{0}{ }^{-1}-T^{-1}, \Delta H\left(p_{0}, T_{0}\right)$ is obtained as the slope. Iteration for p_{0} is required. For ΔH at a chosen p_{0}, instead of T_{0}, the procedure should be comparable.
When ΔC_{p} and c_{l} are known in the region to be extrapolated into, eq 7 cannot give physically unrealistic results. The quality of the extrapolation is merely governed by the accuracy of the measurements (in contrast to EPTRs). As an illustration of an application of eq 7 , the p, T data for ethanol of Drücker (18) will be examined. These data are the only well-documented low-temperature p, T data for ethanol in existence. An extrapolation of a Cragoe fit on the p, T data of Ambrose and Sprake (19) suggests that Drücker's pressure values are up to 1 order too high. This is merely a suggestion, not a proof, since there is no reason that a long extrapolation of an EPTR should yield a correct value. However, application of eq 7 to the p, T data of Ambrose and Sprake (19) shows unequivocally that Drücker's values are far off in the low-temperature part (Table I). In the third column of pressures, the experimental values of Klumb and Lückert (20) are given. Although these are of low accuracy, they confirm the picture.
The following auxillary data were used. The virial coetficients and the heat capacity of the vapor were taken from the work of Counsell et al. (21) (the denominators in the coefficients a and c should be $R T^{2}$ instead of $R T(22)$). The degree of saturation in the C_{P} measurements did not exceed two-thirds and was in general less than that. We have assumed that the pertinent C_{ρ}, p, T relation (21) could be extrapolated to saturation, because the values for C_{ρ} at 80% saturation at 101.325 $\mathrm{kPa}(23)$ and at 90% saturation at 99.992 kPa (24) agree well with the value calculated from the C_{p}, p, T relation. This relation shows good agreement with the values about $280 \mathrm{~K}(25,26)$ and even whth that at 200 K (25); we have therefore found it justified to make our calculations down to 200 K . The 1975 p,T data of Ambrose (27) could not be used, since heat capacity

Table 1. Comparison of Observed and Calculated Vapor Pressures of Ethanol and Enthalpies of Vaporization at Saturation ${ }^{\boldsymbol{a}}$

T	P (obsd b	P (calcd) c	P (obsd) d	ΔH^{c}
173.85	0.168	(0.015)	(0.020)	(47.964)
177.45	0.232	(0.029)	(0.037)	(47.791)
181.35	0.319	(0.057)	(0.070)	(47.603)
188.45	0.584	(0.188)	(0.21)	(47.269)
191.65	0.795	(0.311)	0.34	(47.121)
202.25	2.320	1.452	1.4	46.651
211.95	5.866	5.138	4.7	46.234
220.55	13.719	14.244	13	45.872
232.15	39.463	49.413	(42)	45.392
233.85	51.729	58.626	(49)	45.321

${ }^{a}$ Temperatures are given in Kelvin, pressures in pascals, and enthalpies of vaporization in $\mathrm{kJ} \mathrm{mol}^{-1}$. ${ }^{b}$ Reference 18. ${ }^{c}$ Calculated from eq 7 with auxiliary data in text; values in parentheses are based on extrapolated auxiliary values. ${ }^{d}$ Reference 20; values in parentheses are extrapolated.
data at high degrees of saturation are lacking at high temperatures. The liquid volume as a linear function of temperature (taken as independent of pressure for the range of interest) was calculated from data in Timmerman's book (18). Fiock's equation for the relation between the temperature and the heat capacity of the liquid at saturation pressure (28) was used in the form given by Green (29) in his eq 2. The llquid heat capacity was considered to be independent of pressure, in accordance with the linear temperature dependence of the volume. All temperatures were recalculated to IPTS-68. The gas constant R was taken as $8.31441 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, except where it was necessary to use a value appropriate to a calculation in the literature.
The Cragoe fit on the p, T data of ref 19 follows the calculated vapor pressure of Table I very well ($<5 \%$) in this case.

Equation 7 can also be used to detect "sour" p, T data points. In other studies, the so-called "third-law method", advocated by Lewis and Randall (9), is used (see, e.g., ref 12 for an application). Unfortunately, that method can be applied only if the difference in G° between the phases is known down to 0 K. In practice, this will generally mean that ΔC_{p} and c_{1} must be known down to 0 K . Contrarily, the use of eq 7 requires knowledge of ΔC_{ρ} and c_{l} merely down to the lowest temperature of the vapor pressure measurements.
When the 25 vapor pressures measured by Ambrose and Sprake (19) are calculated with eq 7, l.e., the results of the iteration, the series of residuals turns out to be nonrandom (Table II). The highest pressure value appears to be partlcularly high (by about 0.1 kPa). When this measurement is left out, the remaining 24 residuals are found to constitute a random set, and the standard deviation of the series is reduced by a factor 2.

An analysis of p, T data is much less likely to be successful when an EPTR is used. This is so because, in general, the type and number of terms are chosen to obtain the best fit with the data points. When the Cragoe equation is applied in the case mentioned above, the set of 25 residuals is random (19) and the sour point is not detected. Omission of this polnt leaves the standard deviation unchanged.

Our main point of interest is the accuracy in the p, T data, required to obtain a preset accuracy in ΔH. As will be shown beiow, the accuracy in the p, T data must be 1 order or more better in the differentlal method than in the integral method using eq 7. A simple test was made by calculating the devlation in ΔH of water, methanol, ethanol, and benzene resulting from an intentional error in T. The procedure is described here in detail for ethanol. (For the other three compounds, the procedure and the criterla, as has been described, for accepting the data were comparable.)

First, all $\Delta H\left(p_{0}, T_{0}\right)$'s pertaining to the list of the $25 p, T$ data (19) were calculated with eq 7 , as described under it, and then

Table II. Comparison of Observed and Calculated Vapor Pressures of Ethanol and Enthalpies of Vaporization at Saturation ${ }^{\text {a }}$

T	$p(\text { obsd })^{b}$	$p(\text { calcd })^{c}$	p (obsd) - $p($ calcd $)$	ΔH^{c}
292.766	5.726	5.726	-0.000	42.683
296.776	7.269	7.268	0.001	42.470
298.864	8.205	8.205	0.000	42.356
301.299	9.430	9.428	0.002	42.221
306.475	12.566	12.564	0.002	41.926
309.747	14.981	14.979	0.002	41.732
312.377	17.200	17.200	0.001	41.573
316.368	21.109	21.108	0.001	41.325
320.489	25.914	25.917	-0.003	41.059
324.221	31.047	31.049	-0.002	40.810
327.804	36.760	36.765	-0.005	40.563
332.013	44.584	44.595	-0.011	40.264
336.006	53.267	53.279	-0.012	39.969
339.719	62.572	62.589	-0.017	39.686
343.701	74.032	74.050	-0.018	39.372
348.122	88.763	88.773	-0.010	39.011
350.548	97.821	97.834	-0.013	38.808
351.132	100.121	100.127	-0.006	38.758
351.483	101.518	101.525	-0.007	38.728
351.640	102.151	102.156	-0.005	38.714
352.331	104.983	104.972	0.011	38.655
355.506	118.719	118.742	-0.023	38.378
358.981	135.519	135.487	0.032	38.067
362.752	155.824	155.793	0.031	37.720
366.629	179.321	179.196	0.125	37.351

${ }^{a}$ Temperatures are given in Kelvin, pressures in kilopascals, and enthalpies of vaporization in $\mathrm{kJ} \mathrm{mol}^{-1}$. b Reference 19. ${ }^{\mathrm{c}}$ Calculated from eq 7 with auxiliary data given in text.
by means of the differential method with the calculated Cragoe and Frost/Kalkwarf coefficients and with Chebyshev polynomials of the orders 3,4 , and 5 (8). Subsequently, the flgure for the lowest temperature in the list, 292.766 K , was changed by -0.05 K , and all calculations were repeated. Next, the same was done for a +0.05 K change in the highest temperature, 366.629 K . Giving this example does not imply that deviations of this magnitude were plausible in the accurate work of Ambrose and Sprake, but such deviations can easily occur in work of tower accuracy. Besides, it is merely to illustrate what is meant.

The following literature data were used for water, methanol, and benzene: water, $C_{p}(1)(32), C_{p}(\mathrm{~g})$ (ref 33 and Appendix III), $c_{l}(\mathrm{~g})(34), V(\mathrm{I})(33), p, T(12) ;$ methanol, $C_{p}(1)(28,35)$, $C_{p}(\mathrm{~g})(36), c_{1}(\mathrm{~g})(36), V(1),(18), p, T(19) ;$ benzene, $C_{p}(1)(18)$, $C_{p}(\mathrm{~g})(37), c_{l}(\mathrm{~g})(37), V(1)(18), p, T(12)$. The virial coefficlent B_{v} in ref 37 was accounted for by writing $V(g)=R T p^{-1}+B_{v}$ - $B_{v}{ }^{2} R^{-1} T^{-1} p$.

Some of our results for the four compounds are given in Table III. Only ΔH at the lowest and highest temperatures are glven. In the middle of the interval, all effects are smaller. A slight correction in ΔH (a few joules at the most) is incorporated into the calculated values, to obtain the ΔH value pertaining to the original, measured temperatures where these have been changed by 0.05 K . The change of ΔH with temperature, $\pm 50-100 \mathrm{~J} \mathrm{~K}^{-1}$, apparent from the literature data, was used as a basis for this correction.

The five EPTRs are strikingly more strongly affected by the change of one temperature value than the integral equation. The effect is most pronounced with the fifth-order Chebyshev polynomial.

Unexpected is the magnitude of the change in ΔH at the high-temperature end when the intentional change of 0.05 K is made at the low-temperature side and vice versa. This effect is onty present in EPTRs, and is again most pronounced with the fifth-order Chebyshev polynomial (see, e.g., methanol and ethanol, lowest $T-0.05 \mathrm{~K}$, high T end). This suggests consequences for the application of EPTRs in general. A set of vapor pressure measurements often includes measurements
at medium pressures (accurate) together with measurements at elther high or low pressures (less accurate). The accuracy of calculated enthalples of vaporization at the medium-pressure end is thus, unexpectedly, impaired by the less accurate measurements at the other end.

The vaporization enthalpies as calculated here from p, T data, whether by means of the differential or integral method, agree well with the calorimetric values. This is to be expected, since only data of high quality were used (it was not necessary to use all pertaining high-quallity data in the literature to make our point in Table III). The discrepancy for water at 400 K may be due to the long extrapolation of the virial coefficients. The "Integral value" agrees with the calorimetric value.

The insensitivity of ΔH calculated by the integral method to deviations in the p, T data makes the method sultable where the differential method would fall, l.e., when only few p, T data (minimum: 2) of low accuracy are available. On the other hand, ΔH calcuiated by the integral method is subject to deviations in ΔC_{p} (see Table III). The choice to use either the differential or integral method must depend on availability and quality of the data, elther measured, calcuiated, or estimated.

We emphasize that the fact that eq 7 has been derived as exactly as possible does not restrict its use to those cases where ΔC_{p} and c_{i} are exactly known. Equation 7 can also be useful when, e.g., only estimates are available.

Calculation of $\boldsymbol{\Delta H} \ln$ Arbltrary States

ΔH in arbltrary states is obtained by substitution of eq 6 into eq 4

$$
\begin{align*}
& R \ln p+\int_{r_{0}-1}^{T^{-1}} \mathrm{~d} T^{-1} \int_{r_{0}}^{T} \Delta C_{p}\left(p_{1}, T\right) \mathrm{d} T+ \\
& \quad T^{-1} \sum_{l \geq 0}(i+1)^{-1} c_{l}(T)\left(\rho^{\prime+1}-p_{1}^{i+1}\right)=\Delta H\left(p_{1}, T_{0}\right)\left(T_{0}^{-1}-\right. \\
& \left.T^{-1}\right)+R \ln \rho_{0}+T_{0}^{-1} \sum_{i \geq 0}(i+1)^{-1} c_{l}\left(T_{0}\right)\left(p_{0}^{1+1}-p_{1}^{i+1}\right) \tag{8}
\end{align*}
$$

The quantties $c_{l}(T)$ and $c_{l}\left(T_{0}\right)$ are the values of c_{l} at T and T_{0}. Equation 8 is used as a linear relation, as is eq 7.

The importance of eq 8 lles in the possiblity to calculate ΔH directly in arbltrary states without an intervening calculation at coexistence via eq 7.
$\Delta H\left(\rho_{1}=0, T_{0}\right)$ by eq 8 differs slightly from ΔH° for the phases in their standard states, since the standard-state pressure for a condensed phase is $\mathbf{1 ~ a t m}$ by convention. Numerlcally, the difference is negliglble. Therefore, $\Delta H\left(p_{1}=0, T_{0}\right)$ can often be taken to represent $\Delta H^{\circ}\left(T_{0}\right)$. If necessary, the difference can be calculated from the equation of state of the condensed phase. When the conversion to 1 atm for a condensed phase is actually applied to eq 8 , the result produces the special case (9) where the ΔH looked for is $\Delta H^{\circ}\left(g^{k l}, p-\right.$ $(\mathrm{co})=1 \mathrm{~atm})$.

Designing p, T Relations

When ΔC_{p} and c_{l} are known, eq 7-9 are complete vapor pressure equations once the two parameters ΔH at chosen T_{0} (or p_{0}) and p_{0} (or T_{0}) have been adjusted to the p, T data. However, the required values for ΔC_{p} and c_{l} will often not be available. This does not mean that an EPTR is then the only way out. Estimates can be made of ΔC_{p} or c_{1} and used with eq 7-9. These equations have the forceful advantage that they show exactly how these quantities must be inserted, whereas an arbitrary EPTR has no clear relationship between its terms and their coefficients on the one side and ΔC_{p} and c_{l} on the other side. The latter fact also makes it impossible to translate

Table III. Consequences for $\Delta H\left(p_{0}, T_{0}\right)$ of Intentional Changes ${ }^{4}$ in Measured Temperatures (without Changing the Corresponding Pressures) and Heat Capacities $\Delta C_{p}\left(p_{0}, T\right)$ and Comparison of the Consequences for the Integral and Differential Methods ${ }^{b}$

data or estimates into constraints for the coefficients of the EPTR.

The starting point for designing a p, T relation is eq 8 with p_{1} $=0$:

$$
\begin{align*}
& R \ln p+\int_{T_{0}^{-1}}^{T^{-1}} \mathrm{~d} T^{-1} \int_{T_{0}}^{T} \Delta C_{p}\left(p_{1}=0, T\right) \mathrm{d} T+ \\
& T^{-1} \sum_{l \geq 0}(l+1)^{-1} c_{l}(T) p^{j+1}=\Delta H\left(p_{1}=0, T_{0}\right)\left(T_{0}^{-1}-T^{-1}\right)+ \\
& R \ln p_{0}+T_{0}^{-1} \sum_{l \geq 0)}(l+1)^{-1} c_{l}\left(T_{0}\right) p_{0}^{l+1} \tag{9}
\end{align*}
$$

Putting $p_{1}=0$ not onty simplifies eq 8 but also shows a ΔC_{p} independent of pressure. Leaving the heat capacity of the liquid out of consideration for the moment, the heat capacity of the gas is now clearly separated from the terms $c_{1}(g)$. The terms accounting for the intermolecular interaction in the vapor are now not distributed among ΔC_{p} and c_{l} (and ΔH) but are concentrated in c_{l} only, thus making a simple formulation adequate to describe $C_{p}(g)$ as a function of temperature.

The reader will be able to verify the following example. If we put, for instance, $\Delta C_{p}\left(p_{1}=0, T\right)=\Delta a+\Delta b T+\Delta c T^{2}$, $V(g, p, T)=R T p^{-1}+B_{p}$, where B_{p} is a virlal coefficient of the type developed by Hirschfelder, McClure, and Weeks (38) for dimerlzation or a square-well potential energy function $B_{p}=b_{p}$ $+K T \exp \left(J T^{-1}\right)$, and if $V(c)$ is taken in this example as equal
to b_{p}, substitution in eq 9 with the aid of eq 5 and 6 gives a tallored vapor pressure equation of the form

$$
\begin{equation*}
\ln p=A+B T^{-1}+C \ln T+D T+E T^{2}+F p \exp \left(J T^{-1}\right) \tag{10}
\end{equation*}
$$

The meaning of the coefficients is given in Appendix II. Equation 10 bears a close resemblance to eq 15 of Scott and Osborn (12), which they derived ingeniously in a semlempirical way. They demonstrated that their equation accurately reproduced the measured vapor pressures for normal and abnormal flulds (water) allke.

The clartty of the physical significance of the terms, and their coefficients, of the equations derived from eq 9 enables one to effectively impose constraints. Without constraints, if need be estimates, equations llke eq 10 will not give necessarily good results in extrapolations. This is because the fitting is then entirely directed to the quality of the fit in the interval of the measured ρ, T data (useful for interpolation), but the last terms in eq 10 and analogous relations then can acquire unrealistically large values, whereas they were merely meant as corrections. Ambrose (8) gives an example of a Cragoe equation (eq 10 with terms 3 and 6 left out) with four terms of comparable magnitude. This situation has given rise to some popularity of Chebyshev polynomials, a mathematical device which can give large deviations in derived quantities, as we have shown.

Table IV. Approximations in ΔC_{p}, Virial Coefficients, and Condensed Volume Implied ${ }^{a}$ in Some Frequently Used Vapor Pressure Relations

	$\begin{gathered} \text { equation }{ }^{e} \\ \ln p=A+ \\ B T^{-1}+ \end{gathered}$	$\begin{gathered} \Delta C_{p}^{-} \\ \left(p_{1}=0\right) \end{gathered}$	type nonideality of gas	$V(\mathrm{co})^{f}$
Clapeyron/ Clausius ${ }^{c}$	$+0$	0	none	0
Rankine/ Kirchhoffe	$+C \ln T$	Δa	none	0
van Laar ${ }^{c, d}$	$\begin{gathered} +C \ln T+ \\ D T \end{gathered}$	$\Delta a+$ $\Delta b T$	none	0
Cragoe ${ }^{\text {c }}$	$+\underset{D T^{2}}{C T}+$	$\begin{array}{r} \Delta b T+ \\ \Delta c T^{2} \end{array}$	none	0
Frost/Kalkwarf	$+\underset{D P T^{-2}}{C \ln T}+$	Δa	$c_{0}=-a^{a^{\prime}} R^{-1} T^{-1}+$	$b^{\prime}{ }^{\text {b }}$

${ }^{a}$ Approximations found, in this study, to be actually implied in the equations. These are not always the approximations meant, by the designers of the equations, to be implied. See text. ${ }^{b} a^{\prime}$ and b^{\prime} are the van der Waals constants. According to Partington (7), using a second virial coefficient of this form is approximately equivalent to using the van der Waals equation. ${ }^{c}$ Vapor pressure relations in which the c_{i} terms are neglected can be produced as well from eq 7 and 8 as from eq 9. However, in cases where the c_{i} terms are not neglected, eq 7 and 8 would yield vapor pressure relations with mixed additional terms, in T and p_{0} and in T and p_{1}, respectively, which eq 9 does not. For homogeneity of formulation, we have derived all five relations from eq 9. dThe Nernst equation has the same form, but its coefficient C has a fixed value. The van Laar equation should yield better extrapolations than the Cragoe equation, since its assumption about ΔC_{p} as a function of T is more realistic. ${ }^{e}$ Coefficients in Appendix II. ${ }^{f}$ Condensed volume.

Finally, we show in Table IV how eq 9 ylelds some wellknown vapor pressure relations. We emphasize that the approximations in Table IV are those to which a particular equation is actually found to correspond in the present study. These are not always the same as those which some authors had in mind. For instance, van Laar (39) used the van der Waals equation, but, presumably through some cancellation, his resulting equation does not account for nonideallty of the gas. Some of the assumptions made by Frost and Kalkwarf (40) together merely amount to the effect of taking $\Delta C_{p}\left(p_{1}=0\right)$ as a constant.

Acknowledgment

We thank Professor J. M. Los for useful discussions and for drawing our attention to some publications. We are indebted to Miss F. M. E. Sloothaak and to Mrs. F. Wagenaar for typing the manuscript.

Apperdix I

Equation 4 is developed from eq 3 as follows.

$$
\begin{equation*}
\Delta H\left(p_{0}, T_{0}\right)=\Delta H\left(p_{1}, T_{0}\right)+\left.\int_{p_{1}}^{p_{0}}\left(\frac{\partial T^{-1} \Delta V(p, T)}{\partial T^{-1}}\right)\right|_{p^{\prime}=T_{0}} d p \tag{11}
\end{equation*}
$$

Analogously, we have for ΔC_{p}

$$
\begin{equation*}
\int_{T_{0}^{-1}}^{T^{-1}} \mathrm{~d} T^{-1} \int_{\mathrm{T}_{0}}^{T} \Delta C_{p}\left(p_{0}, T\right) \mathrm{d} T=\int_{\mathrm{T}_{0}}^{T^{-1}} \mathrm{~d} T^{-1} \int_{T_{0}}^{T} \Delta C_{p}\left(p_{1}, T\right) \mathrm{d} T+A \tag{12}
\end{equation*}
$$

where
$A=$

$$
\begin{equation*}
\int_{T_{0}-1}^{r^{-1}} d T^{-1} \int_{T_{0}}^{T} d T \int_{p_{1}}^{p_{0}}\left[\frac{\partial}{\partial T}\left(\frac{\partial T^{-1} \Delta V(p, T)}{\partial T^{-1}}\right)_{p}\right]_{p} d p \tag{13}
\end{equation*}
$$

The form of the last integral has been obtained by using the equality

$$
\left[\partial(\partial \Delta H / \partial T)_{p} / \partial p\right]_{T}=\left[\partial(\partial \Delta H / \partial p)_{T} / \partial T\right]_{p}
$$

and then substtuting $\left(\partial T^{-1} \Delta V / \partial T^{-1}\right)_{p}$ for $(\partial \Delta H / \partial p)_{T}$. The term A is worked out as follows. The integrations are interchanged

$$
\begin{aligned}
& A= \\
& \int_{p_{1}}^{p_{0}} \mathrm{~d} p \int_{T_{0}^{-1}}^{T^{-1}} \mathrm{~d} T^{-1} \int_{T_{0}}^{T}\left[\frac{\partial}{\partial T}\left(\frac{\partial T^{-1} \Delta V(p, T)}{\partial T^{-1}}\right)_{p}\right]_{p} \mathrm{~d} T
\end{aligned}
$$

so

$$
\begin{aligned}
A=\int_{\rho}^{\rho_{0}} \mathrm{dp} \int_{T^{-1}}^{T^{-1}}[& {\left[\left(\frac{\partial T^{-1} \Delta V(p, T)}{\partial T^{-1}}\right)_{P}-\right.} \\
& \left.\left.\left(\frac{\partial T^{-1} \Delta \Delta(p, T)}{\partial T^{-1}}\right)\right|_{D=T_{0}}\right] d T^{-1}
\end{aligned}
$$

$$
A=\int_{p_{1}}^{p_{0}}\left\{T^{-1} \Delta V(p, T)-T_{0}^{-1} \Delta V\left(p, T_{0}\right)-\right.
$$

$$
\begin{equation*}
\left.\left[\left.\left(\frac{\partial T^{-1} \Delta V(p, T)}{\partial T^{-1}}\right)\right|_{0} T_{=r_{0}}\left(T^{-1}-T_{0}^{-1}\right)\right]\right\} d p \tag{14}
\end{equation*}
$$

Upon substitution of eq 11, 12, and 14 into Θq 3, we obtain Θq 4.

Appendix II

The coefficlents of the equation

$$
\ln p=A+B T^{-1}+C \ln T+D T+E T^{2}+F p \exp \left(J T^{-1}\right)
$$

are

$$
\begin{gathered}
A \equiv R^{-1}\left\{-\Delta a-\Delta a \ln T_{0}-\Delta b T_{0}-1 / 2 \Delta c T_{0}^{2}+\right. \\
\left.\Delta H\left(p_{1}=0, T_{0}\right) T_{0}{ }^{-1}+R \ln p_{0}+K p_{0} \exp \left(J T_{0}^{-1}\right)\right\} \\
B \equiv R^{-1}\left\{\Delta a T_{0}+1 / 2 \Delta b T_{0}^{2}+1 / 3 \Delta c T_{0}^{3}-\Delta H\left(p_{1}=0, T_{0}\right)\right\} \\
C \equiv R^{-1} \Delta a \\
D \equiv 1 / 2 R^{-1} \Delta b \\
E \equiv 1 / 0 R^{-1} \Delta c \\
F \equiv-R^{-1} K
\end{gathered}
$$

The coefficients of the vapor pressure relations in Table IV are as follows (see also footnote c of Table IV):
van Laar

$$
\begin{gathered}
A \equiv R^{-1}\left\{-\Delta a-\Delta a \ln T_{0}-\Delta b T_{0}+\Delta H\left(p_{1}=0, T_{0}\right) T_{0}^{-1}+\right. \\
\left.R \ln p_{0}\right\} \\
B \equiv R^{-1}\left\{\Delta a T_{0}+1 / 2 \Delta b T_{0}^{2}-\Delta H\left(p_{1}=0, T_{0}\right)\right\} \\
C \equiv R^{-1} \Delta a \\
D \equiv 1 / 2 R^{-1} \Delta b
\end{gathered}
$$

Rankine: see van Laar, with $\Delta b=0$; in the Clapeyron-Claustus equation, $\Delta a=\Delta b=0$.
Cragoe

$$
\begin{gathered}
A \equiv R^{-1}\left\{-\Delta b T_{0}-1 / 2 \Delta c T_{0}^{2}+\Delta H\left(p_{1}=0, T_{0}\right) T_{0}^{-1}+R \ln p_{0}\right\} \\
B \equiv R^{-1}\left(1 / 2 \Delta b T_{0}^{2}+1 / 3 \Delta c T_{0}^{3}-\Delta H\left(p_{1}=0, T_{0}\right)\right\} \\
C \equiv 1 / 2 R^{-1} \Delta b \\
D \equiv 1 / 8 R^{-1} \Delta c
\end{gathered}
$$

Frost/Kalkwarf

$$
\begin{array}{r}
A \equiv R^{-1}\left\{-\Delta a-\Delta a \ln T_{0}+\Delta H\left(p_{1}=0, T_{0}\right) T_{0}^{-1}+R \ln p_{0}-\right. \\
\left.R^{-1} a^{\prime} p_{0} T_{0}^{-2}\right\}
\end{array}
$$

$$
\begin{gathered}
B \equiv R^{-1}\left\{\Delta a T_{0}-\Delta H\left(p_{1}=0, T_{0}\right)\right\} \\
C \equiv R^{-1} \Delta a \\
D \equiv R^{-2} a^{\prime}
\end{gathered}
$$

Appendix III

Apparently, $C_{p}(\mathrm{~g}, \mathrm{p}, T)$ for water has not been measured. However, the virial coefficients and the ideal heat capacity $C_{p}\left(g_{,} p_{1}=0, T\right)$ are known. To account for $C_{p}\left(\mathrm{~g}, p_{0}, T\right)$ in eq 7 without double differentiation followed by double integration of the very complex virlal coetficients, we retained the ideal gas part in the double integral and shifted the rest to the $c_{i}(\mathrm{~g})$ terms (in the following, we omit g for gas).

$$
\begin{gather*}
\int_{T_{0}{ }^{-1}}^{T^{1}} \mathrm{~d} T^{-1} \int_{T_{0}}^{T} C_{p}\left(p_{0}, T\right) \mathrm{d} T=\int_{T_{0}{ }^{-1}}^{T^{-1}} \mathrm{~d} T^{-1} \int_{T_{0}}^{T} C_{p}\left(p_{1}=0, T\right) \mathrm{d} T- \\
\quad \sum_{i \geqslant 0}(i+1)^{-1} p_{0}{ }^{i+1} \int_{T_{0}^{-1}}^{T^{-1}} \mathrm{~d} T^{-1} \int_{T_{0}}^{T} T\left[\mathrm{~d}^{2} c_{i}(T) / \mathrm{d} T^{2}\right] \mathrm{d} T \tag{15}
\end{gather*}
$$

Applying partial integration with T as the primitive and $d^{2} c_{i}$ $(T) / d T^{2}$ as the derivative in the last integrand and adding the result of the integration of the last term of eq 15 to the gas part of the $\sum c_{l}$ term in eq 7 yields the combined term

$$
\begin{aligned}
&+T^{-1} \sum_{l \geq 0}(i+1)^{-1}\left\{c_{l}(T) p^{\prime+1}-c_{l}\left(T_{0}\right) p_{0}^{l+1}+\left(T_{0}-T\right) \times\right. \\
& {\left.\left[\mathrm{d} c_{l}(T) / \mathrm{d} T\right]_{T_{8}} p_{0}^{I+1}\right\} }
\end{aligned}
$$

At the same time, this yields yet another type of vapor pressure equation.

Into this term, a substtution is made to account for the fact that Wexler's virial coefficients are $c_{l}(T) R^{-1} T^{-1}$. (There is a printing error in Wexler's expression for C^{\prime}. It should read log $\left(-C^{\prime}\right)$ instead of $-\log C^{\prime}$.)

Literature Cited

(1) Mosseiman, C.; Dekker, H. Recl. Trav. Chim. Pays-Bas 1969, 88, 257.
(2) Dekker, H.; Mosselman, C. Recl. Trav. Chim. Pays-Bas 1979, 89 , 1276.
(3) Mosselman, C.; Dekker, H. J. Chem. Soc., Faradey Trans. 11975, $71,417$.
(4) Sellers, P.; Stridh, G.; Sunner, S. J. Chem. Eng. Data 1978, $23,250$.
(5) Svensson, Ch. J. Chem. Thermodyn. 1979, 11, 593.
(6) Sunner, S.; Wulff, C. A. J. Chem. Thermodyn. 1980, 12, 505.
(7) Partington, J. R. "An Advanced Treatise on Physical Chemistry"; Longmans: London, 1951.
(8) Ambrose, D. "Specialist Periodical Reports: Chemical Thermodynamics"; McGlashan, M. L., Senlor Reporter; The Chemical Society: London, 1973; Vol. 1, Chapter 7.
(9) Lewis, G. N.; Randall, M.; Pltzer, K. S.; Brewer, L. "Thermodynamics", 2nd ed.; McGraw-Hill: New York, 1961; Chapter 33.
(10) Thomson, G. W. "Physical Methods in Organic Chemistry", 3rd ed.; Weissberger, A., Ed.; Intersclence: New York, 1959; Vol. 1, Part 1, Chapter 9, p 401.
(11) Thomson, G. W. Chem. Rev. 1946, 38, 1.
(12) Scott, D. W.; Osborn, A. G. J. Phys . Chem. 1979, 83, 2714.
(13) Miller, D. G. Ind. Eng. Chem. 1964, 56 (3), 46.
(14) Othmer, D. F.; Huang, H. Ind. Eng. Chem. 1965, 57 (10), 42.
(15) Gottschal, A. J.; Korvezee, A. E. Recl. Trav. Chim. Pays-Bas 1953, 72, 465.
(16) Martynov, G. A. Russ . J. Phys . Chem. (Engl. Transl.) 1981, 35, 746.
(17) Ince, E. L. "Ordinary Differentlal Equations"; Dover Publications: New York, 1956; p 16.
(18) Timmermans, J. "Physico-Chemical Constants of Pure Organic Compounds"; Elsevier: Amsterdam, 1950 and 1965; Vols. 1 and 2.
(19) Ambrose, D.; Sprake, C. H. S. J. Chem. Thermodyn. 1970, 2, 631.
(20) Klumb, H.; Lückert, J. Vakuum-Technik 1959, 8, 62.
(21) Counsell, J. F.; Fenwick, J. O.; Lees, E. B. J. Chem. Thermodyn. 1970, 2, 367.
(22) Weltner, W.; Plizer, K. S. J. Am. Chem. Soc. 1951, 73, 2606.
(23) Strömsōe, E.; Rönne, H. G.; Lydersen, A. L. J. Chem. Eng. Data 1970, 15, 286.
(24) Sinke, G. C.; de Vrles, T. J. Am. Chem. Soc. 1953, 75, 1815.
(25) Eucken, A.; Franck, E. U. Z. Elektrochem. 1948, 52, 195.
(26) Halford, J.;' Miller, G. A. J. Phys. Chem. 1957, 61, 1536.
(27) Ambrose, D.; Sprake, C. H. S.; Townsend, R. J. Chem. Thermadyn. 1975, 7, 185.
(28) Fiock, E. F.; Glnnings, D. C.; Holton, W. B. Bur. Stand. J. Res. (U.S.) 1931, 6, 881.
(29) Green, J. H. S. Trans. Faraday Soc. 1961, 57, 2132.
(30) Wadsö, I. Acta Chem. Scand. 1986, 20, 544.
(31) Poläk, J.; Benson, G. C. J. Chem. Thermodyn. 1971, 3, 235.
(32) Osborn, N. S.; Strmson, H. F.; Ginnings, D. C. J. Res. Natt. Bur. Stand., Sect. A 1939, 23, 197.
(33) Schmidt, E.; Grigull, U. "Properties of Water and Steam in SI Units", 2nd ed.; Springer: West Berlin, 1979.
(34) Wexler, A. J. Res. Natl. Bur. Stand., Sect. A 1976, 80, 775.
(35) Parks, G. S. J. Am. Chem. Soc. 1925, 47, 338.
(36) Counsell, J. F.; Lee, D. A. J. Chem. Thermadyn. 1973, 5, 583.
(37) Todd, S. S.; Hossentopp, J. A.; Scott, D. W. J. Chem. Thermodyn. $1978,10,641$.
(38) Hirschfelder, J. O.; McClure, F. T.; Weeks, I. F. J. Chem. Phys. 1942, 10, 201.
(39) van Laar, J. J. Recl. Trav. Chim. Pays-Bas 1920, 39, 371.
(40) Frost, A. A.; Kalkwart, D. R. J. Chem. Phys. 1953, 21, 264.

Received for review July 7, 1980. Revised manuscript received January 4, 1982. Accepted February 9, 1982.

Aqueous Dissociation of Phenylpropiolic Acid

Lowell M. Schwartz,* Robert I. Gelb, and Daniel A. Laufer
Department of Chemistry, Unlversity of Massachusetts, Boston, Massachusetts 02125

> The acid dissociation constant of aqueous phenylpropiolic acid (3-phenyl-2-propynoic acld) has been determined between 15 and $45{ }^{\circ} \mathrm{C}$ by pH potentiometry. The standard enthalpy and entropy of diseoclation are calculated from the temperature varlation of the dissoclation constant. The ${ }^{13} \mathrm{C}$ NMR resonance displacement of the carboxylate carbon upon acid dlesoclation was measured, and its correlation with the standard entropy of dissociation Implles that the molecular form of aqueous phenylproplolic acid exlsts partly as an ion pair In equllibrium whth the covalently bonded structure.

The literature seems not to contain reliable values of acid dissociation parameters for aqueous phenylpropiolic acid (3-phenyl-2-propynoic acid). The "Handbook of Biochemistry and Molecular Blology" lists two entries, a value of $\mathrm{p} K_{\mathrm{a}}=2.269$ at $16.8^{\circ} \mathrm{C}$ together with $\Delta H^{\circ}=-0.792 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\Delta S^{\circ}=$ $-13 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}(1)$ and a value of $\mathrm{p} K_{\mathrm{a}}=2.23$ at $25^{\circ} \mathrm{C}$ (2). The entry at $16.8^{\circ} \mathrm{C}$ makes reference to a paper by Walde (3), but this paper makes further reference to a paper by Harned and Sutherland (4) as the primary source. Harned and Sutherland, however, do not mention phenylpropiolic acid so that details of the $16.8{ }^{\circ} \mathrm{C}$ experiment are unknown. The $25^{\circ} \mathrm{C}$ entry in the handbook is attributed to Mansfield and Whiting (5), who, indeed, report a pH potentiometric measurement of $\mathrm{p} K_{a}$

